49,119 research outputs found

    Mechanisms of Intestinal Epithelial Barrier Dysfunction by Adherent-Invasive Escherichia coli.

    Get PDF
    Pathobiont expansion, such as that of adherent-invasive Escherichia coli (AIEC), is an emerging factor associated with inflammatory bowel disease. The intestinal epithelial barrier is the first line of defense against these pathogens. Inflammation plays a critical role in altering the epithelial barrier and is a major factor involved in promoting the expansion and pathogenesis of AIEC. AIEC in turn can exacerbate intestinal epithelial barrier dysfunction by targeting multiple elements of the barrier. One critical element of the epithelial barrier is the tight junction. Increasing evidence suggests that AIEC may selectively target protein components of tight junctions, leading to increased barrier permeability. This may represent one mechanism by which AIEC could contribute to the development of inflammatory bowel disease. This review article discusses potential mechanisms by which AIEC can disrupt epithelial tight junction function and intestinal barrier function

    Analysis and equalization of data-dependent jitter

    Get PDF
    Data-dependent jitter limits the bit-error rate (BER) performance of broadband communication systems and aggravates synchronization in phase- and delay-locked loops used for data recovery. A method for calculating the data-dependent jitter in broadband systems from the pulse response is discussed. The impact of jitter on conventional clock and data recovery circuits is studied in the time and frequency domain. The deterministic nature of data-dependent jitter suggests equalization techniques suitable for high-speed circuits. Two equalizer circuit implementations are presented. The first is a SiGe clock and data recovery circuit modified to incorporate a deterministic jitter equalizer. This circuit demonstrates the reduction of jitter in the recovered clock. The second circuit is a MOS implementation of a jitter equalizer with independent control of the rising and falling edge timing. This equalizer demonstrates improvement of the timing margins that achieve 10/sup -12/ BER from 30 to 52 ps at 10 Gb/s

    Cancellation of crosstalk-induced jitter

    Get PDF
    A novel jitter equalization circuit is presented that addresses crosstalk-induced jitter in high-speed serial links. A simple model of electromagnetic coupling demonstrates the generation of crosstalk-induced jitter. The analysis highlights unique aspects of crosstalk-induced jitter that differ from far-end crosstalk. The model is used to predict the crosstalk-induced jitter in 2-PAM and 4-PAM, which is compared to measurement. Furthermore, the model suggests an equalizer that compensates for the data-induced electromagnetic coupling between adjacent links and is suitable for pre- or post-emphasis schemes. The circuits are implemented using 130-nm MOSFETs and operate at 5-10 Gb/s. The results demonstrate reduced deterministic jitter and lower bit-error rate (BER). At 10 Gb/s, the crosstalk-induced jitter equalizer opens the eye at 10^sup-12 BER from 17 to 45 ps and lowers the rms jitter from 8.7 to 6.3 ps

    Holographic Equilibration under External Dynamical Electric Field

    Full text link
    The holographic equilibration of a far-from-equilibrium strongly coupled gauge theory is investigated. The dynamics of a probe D7-brane in an AdS-Vaidya background is studied in the presence of an external time-dependent electric field. Defining the equilibration times teqct_{eq}^c and teqjt_{eq}^j, at which condensation and current relax to their final equilibrated values, receptively, the smallness of transition time kMk_M or kEk_E is enough to observe a universal behaviour for re-scaled equilibration times kMkE(teqc)2k_M k_E (t_{eq}^c)^{-2} and kMkE(teqj)2k_M k_E (t_{eq}^j)^{-2}. Moreover, regardless of the values for kMk_M and kEk_E, teqc/teqjt_{eq}^c/t_{eq}^j also behaves universally for large enough value of the ratio of the final electric field to final temperature. Then a simple discussion of the static case reveals that teqcteqjt_{eq}^c \leq t_{eq}^j. For an out-of-equilibrium process, our numerical results show that, apart from the cases for which kEk_E is small, the static time ordering persists.Comment: 6 pages, 8 figure
    corecore